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Abstract

The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering includ-
ing audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to
jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a
sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered
unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from
the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data,
the "H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared
with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayes-
ian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in

noisy signals.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Detection; Estimation; NMR spectroscopy; Bayesian inference; MCMC; Metabolomics

1. Introduction

The problem of detection and parameter estimation for
noisy signals arises in different areas of science and engi-
neering such as audio processing, seismology, electrical
engineering and nuclear magnetic resonance spectroscopy
(NMR). For the latter application the free induction decay
(FID) detected in an NMR experiment can be considered
as a sum of exponentially damped sinusoidal components,
and this model has proven to be adequate in a number of
applications, including the analysis of solution-state bio-
fluid NMR spectroscopy. In this case model detection
reduces to the estimation of the number of components.
The detection and estimation problem for the damped
sinusoidal model has received considerable attention over
the past two decades, and this has increased since the

* Corresponding author. Fax: +44 (0) 1223 333345.
E-mail address: dvr22@cam.ac.uk (D.V. Rubtsov).

1090-7807/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmr.2007.08.008

advent of NMR spectroscopy based metabolomics [1,2],
where it is often both laborious and mathematically chal-
lenging to identify all the components in a biological
matrix such as urine, blood plasma or a tissue extract as
detected by "H NMR spectroscopy. Ideally for this applica-
tion one would like a method which is fully automated but
still capable of resolving as many resonances as possible in
a complex biological sample.

One class of algorithms, which includes popular meth-
ods such as linear prediction singular value decomposition
(LP SVD), Hankel SVD (HSVD) [3], Prony method [4],
and the matrix pencil [5], is based on the principle of linear
prediction and space-state formalism. The algorithms
require minimal user input and do not depend on starting
values. However, their performance can be strongly
affected by the choice of the model order which gives rise
to a detection problem. The detection problem has been
dealt with by a number of different approaches including
the selection of a subset of ‘significant’ signal poles within
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SVD framework, by statistical testing [6], Cadzow’s tech-
nique for a minimum variance estimate [7], consecutive
reconstructions with residual analysis [8] and by informa-
tion theoretical criteria such as Akaike information crite-
rion (AIC) [9] and minimum description length (MDL)
[10]. In [11], for example, a matrix pencil technique is com-
bined with AIC/MDL criteria in a joint detection—estima-
tion procedure. A drawback of these techniques is that
they do not offer much flexibility in terms of prior knowl-
edge incorporation [12]. Recent and promising develop-
ments include filter diagonalization method and related
high-resolution techniques rooted in quantum dynamics
calculations [13,14].

Another type of approach, used by techniques such as
VARPRO [15] and AMARES [16], is based on non-linear
optimization. They seek to obtain maximume-likelihood
parameter estimates of a chosen model, using local optimi-
zation procedures such as Levenberg—Marquardt [15], or
global optimization procedures such as simulated anneal-
ing [17] or genetic algorithms [18]. Algorithms of this class
are naturally very flexible and allow the use of a wide vari-
ety of prior knowledge. However, the detection problem
has to be solved by external means before these methods
can be applied. They also suffer from characteristic prob-
lems of non-linear optimization procedures applied to
high-dimension spaces such as dependency on starting
points and failure to converge to an acceptable solution
in a reasonable amount of time. User input has been used
to circumvent the starting value problem but it is not very
reliable especially in low signal-to-noise ratio (SNR) cases.
Dealing with nuisance peaks and baseline distortion can
also pose a problem since it is difficult to define a model
function for them [12].

To address the short comings of the above approaches
Bayesian inference has been applied to the problem, partic-
ularly in a pioneering series of papers by Bretthorst [19-23],
followed by Dou and Hodgson [24,25]. These techniques
function effectively over various experimental setups. How-
ever, despite the considerable attention, the problem of
detection and estimation remains generally unsolved for
difficult cases when SNR is low and components’ frequen-
cies are closely spaced (co-resonant) [12].

Green [26] has proposed a technique called Reversible
Jump Markov Chain Monte Carlo which employs a full
Bayesian inference to joint detection—estimation problems.
The technique has been successfully applied to various
problems including mixture estimation [27]. Furthermore,
Andrieu and Doucet [28] applied Reversible Jump
MCMC successfully to the problem of detection—estima-
tion of real-valued sinusoids in a noisy signal. The main
advantage of the approach is that it requires minimal user
intervention while increasing sensitivity and resolution of
the analysis. The Bayesian framework allows great flexi-
bility in using prior information on the model and its
parameters. At the same time it offers rigorous treatment
of the available information based on the probability
theory.

In this work, we offer a joint detection—estimation algo-
rithm for the complex-valued case with exponential damp-
ing following the Reversible Jump approach developed by
Andrieu and Doucet [28]. Specifically, this is applied to the
problem of estimating the number of components in a FID
generated during a NMR experiment. The model and pos-
terior density function are described in Section 2. Section 3
gives a formulation of the Reversible Jump MCMC algo-
rithm. In Section 4 a numerical study of the algorithm’s
performance is presented, including a Monte Carlo study
of detection and estimation properties using simulated
dataset. The comparison with combined MDL/AIC and
matrix pencil technique is given which shows the algo-
rithm’s superior performance especially in low SNR cases.
Next, the algorithm is used to process a '"H NMR FID of a
standard sample of glutamic acid and a human blood
plasma sample, representing a challenging biological mix-
ture typically analyzed using NMR spectroscopy based
metabolomics.

2. The data model and posterior distribution function
2.1. The data model

Let y=[y,, t=0,...,N—1, represent an observed
complex data sequence of length N. The model with
Lorentzian decay can be expressed as

k
y(0) = azi(t) + elt) (1)
=1

where z;(t) = e/>™itde "4 q; = 4,67, w; € [0,1)—angular
frequency, o, € Rt—damping factor, a,—complex ampli-
tude, 4; € R*—magnitude, ¢, € [0,1)—angular phase shift,
i=1,...,kk <kp.,—number of sinusoidal components
with k. < N. g(7) represents added complex-valued noise
and assumed to be independently identically distributed
(i.i.d.) zero mean white circular Gaussian with variance
o7 for both complex and real part. 4 is a sampling interval.
We let 4 to be 1 without loss of generality.

Such a model can arise in several contexts, including the
FID of an NMR experiment obtained by quadrature
detection.

In vector-matrix form the model in Eq. (1) can be writ-
ten as

Y= Dkak + & (2)
h . T
Werey_[yla"'ayN]a
0 0 0
Z} Z% e Z]f
Zl 22 e Zk
D, =
N-1  _N-1 -1
Zl 22 . Zl}:’
is N x k complex matrix, a; = [ay, . . .,ax]" is a vector of com-

plex amplitudes and g, = [¢1,...,ey]" is a noise sequence.
Our objective in this paper is to jointly estimate k and a
vector of parameters 0, = (z;, a;, a,%)T.
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2.2. Prior distributions and likelihood

Following the model, Eq. (2), the likelihood function is

! e(—<Y—DA“k>H(Y—D/»'W/z”ﬁ) (3)

k,0,) =
p(y | k) (27_[0_1%)}\/

where H indicates complex conjugation.

The prior probability distribution for k is a truncated

Poisson distribution with k < k.«

A5
k ~ He
with A being the “expected”” number of components. The
prior distribution for ¢7 is an independent inverse gamma
distribution: a7 ~ 1G(v9/2,7,/2). We assume that a; is
independently and normally distributed: a; ~ N(0, 07%;)
with X' = £ DD, where weighting parameter 6% can be
interpreted as the expected SNR [28]. The variance for
the prior distribution follows g-prior approach, see [29]
for motivation.

We assume z; to be uniformly and independently dis-
tributed within the complex unit disk so |z <1 and
p(z) o< 1/7*.

For the scale hyper-parameter 6> we adopt an inverse
gamma distribution 8% ~ 1G(a, fBs) with as=2 and
PBs> 0. Finally, we hold A fixed in this paper.

This choice of prior distributions gives us an advantage
of conjugacy being fairly non-informative at the same time.

The parameter space of the model can be expressed as a
union of subspaces @2U;"s {k} x @, where @ =R" in the
case there are no components in the model and the signal
consists just of mnoise, and ©,2C' x D x R*for
k=1,...,knax where D is the complex unit disk. We also
define Q2U™ {k} x D,

2.3. Posterior distribution

The inference of k and 6, is based on the joint posterior
distribution p(k, 0;]y). According to Bayes’ rule:

(vDra V¥ (v—Drar) /262
plk,0: |y) o5 li)‘_x'e( (v-Dyae) (5-Diac)/2)

To

(aH -2 0
x <zn>ﬂlaizk\ (Cofa/2ri) 4 -t (4)
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By completing the square we integrate out ay:
a; ~ ]V(Iﬂk7 U}%Mk) (5)

where M, = 1/(DYD; +£.1),
and then o7:

op ~1G(vo/2+ N, [70 + ¥/ (Iy — D:M,D})y] /2) (6)

m; = D;y/ (DD + 1),

and obtain an expression for the posterior distribution up
to a normalizing constant:

Ak
k!

1 A*
(8 +1)f ez
(7)

Clearly the posterior distribution is non-linear in the
parameters (k,z;) and does not admit a closed-form solu-
tion. Therefore, in the next section we employ the MCMC
method to estimate the posterior p(k,zy), Eq. (7), and
draw a; and o} from respective full conditional distribu-
tions, Eqgs. (5) and (6).

P2k |y) o< [pg+ " (Iy — DMDY )y~ | My <D (k. 2:)
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3. Bayesian computation using Reversible Jump MCMC
3.1. General formulation of Reversible Jump MCMC

The particular difficulty of our task is that the number of
components in the signal is unknown so “the number of
unknowns is unknown itself”’. Recently so-called trans-
dimensional MCMC techniques have been proposed
[26,30,31] which allow for joint estimation of parameters
across parameter subspaces of different dimensions. In this
paper, we employ the Reversible Jump (RJ) MCMC tech-
nique [26]. R MCMC is a random-sweep Metropolis-Has-
tings method adapted for sampling from a joint state space
OcUm (k) x O.

Let x,x = (0, k) denote the current state for an MCMC
sampler and m(x) the target probability distribution. In
order to perform the next move of the Markov chain we
propose a move type m and sample a candidate value x
from a proposal distribution g,,(x |x). The move is accepted
with probability

, . n(x')g, (x" | x)
(X' %) :m‘n{lvm} ®)

Otherwise the move is rejected and the state of the chain re-
mains the same. If we consider only move types which do
not change the dimension of the parameter vector the con-
dition, Eq. (8), reduces to a usual Metropolis-Hastings
acceptance probability [26,32] and the algorithm becomes
Metropolis-Hastings MCMC.

If the move changes the dimensionality of the model we
need to define a deterministic, differentiable, invertible
dimension matching function [26,33]. Let us, for example,
consider a move from k to a higher-dimensional space
k + 1. In this case the acceptance probability has the form:

. PXe1 | y)  plk | k+1)
OCk—»k+1(Xk+1;Xk) = min {17 p(Xk | y) Xp(k+l | k)
©)

Tir—k Xk | S (X, 0)) ‘6f}wk+1
Qi (0 | Xg) o(xy, u)
where p(klk+ 1) and p(k+ 1|k) are the probability of
choosing a dimension-reducing move and vice versa, a
vector u is independent of x and g¢r_x 4+ ([xi) and

X
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Gk + 1—1("[Xx + 1) are the proposal distributions for dimen-
sion-increasing and dimension-decreasing moves, respec-
tively. The last term is the Jacobian of the transformation
Jfr—k +1 as it changes variable from (xg,u) to x; + 1.

3.2. Application of RJ MCMC to the problem of Bayesian
modeling of a complex-valued damped sinusoidal signal

The algorithm is constructed using the following move
types proposed by Green [26] for the sampler:

(a) Update the vector of parameters.
(b) Birth of a new component.
(c) Death of an existing component.

The moves (b) and (c) change the dimension of the model
by increasing or decreasing by 1, respectively. We use a ran-
dom scan form of the algorithm that means that a candidate
move is chosen randomly from the three at each iteration.
The transition kernel of the Markov chain is therefore a mix-
ture of the transition kernels associated with the moves (a)-
(c). Let uy, by, d. be probabilities to choose update, birth or
death moves, respectively, such that

uk—l—bk—l—dk: l,d():(),bkmax :0

We set
. plk+1)
bkcmm{l, o }, (10)
. p(k)
dis1 _Cmm{l’p(kJrl)} (11)

where p(k) is the prior probability for the model order k
and parameter ¢ adds extra flexibility to the algorithm by
regulating the proportion of the birth/death moves to up-
date moves. We empirically chose ¢ = 0.2 for all k.

Let us assume that initial vector of parameters is
(0%, ko). First, we consider an update move (a) which does
not change dimensionality of the model. It can be summa-
rized as a sequence of the following steps:

. Consider an /th component z; of the model, /=1,..., k.

. Sample z, from the proposal distribution g(z/z_;).

. Calculate acceptance probability a.

.If o> A then z, =z, where A ~ Uy 1 else z; remains the
same.

5. Draw nuisance parameters a; and o7 from appropriate

full conditional distributions, Egs. (5) and (6) (optional).

AW N =

The choice of the proposal distribution can be critical to
the success of the algorithm. We have chosen a popular
random walk proposal so

q(z) | 2) o< N(2}, 03,) x Lo (Iz)]) (12)

The proposal gives a random Gaussian perturbation of the
current signal pole z; given that its absolute value does not
exceed 1 to satisfy non-negativity constraint on the damp-
ing factor.

The proposal has proven to be effective in simulations.
However, it is quite sensitive to the choice of o7, Some
authors suggested the acceptance ratio of 25-75% of
attempted updates [32,34]. We found that the value for
ofp of around 1/(3N) provides an acceptance ratio of about
40% in our simulations but this choice is not instructive.

The acceptance probability then is given by

(N+v0/2)
a(z),z)) = min{ 1 <V0 + v/ (Iy — DkMkaH)Y) o
" "\ + ¥ (Iy — DMD; )y

q(z | 7) ,
I ik )} (13)
The nuisance parameters are drawn from their respective
full conditional distributions, Egs. (5) and (6), using Gibbs
sampling steps.

As discussed by Andrieu and Doucet [28] the hyper-
parameters 6> and A can be roughly estimated from the
data independently or sampled according to respective con-
ditional distributions. In the latter case 6 has the full con-
ditional probability distribution in the form of an inverse
gamma distribution:

& ~1G (o5 + k, B + al’ DI’ Dya /207) (14)

The hyper-hyperparameters are set as o5 = 2, 5 = 10. (The
model is quite robust to the choice of particular values of
Ps, see [28].)

We assume that value for A is estimated from the data
independently.

The birth and death moves form a reversible pair so
these were designed together. The key is to ensure that
the proposal distributions conform to the requirement of
dimension matching. The necessary detailed balance condi-
tion is determined by the acceptance probability, Eq. (9).

When the birth move is chosen we propose a new pole
Z; + 1 by drawing from the uniform distribution Up where
D is the complex unit disk.

The matching death move consists of choosing an exist-
ing pole by drawing an index ind € (1,...,k) at random and
deleting indth component from the model.

Using Eq. (9), the Jacobian term equals 1 and after
substituting expressions for the probabilities and proposal
distributions and simplifications we obtain

(V4v0/2)
70 + ¥ (Iv — DM, D)y ) ’
y

Olpirth = Min ¢ 1,
' <Vo + ¥ (Iy — Dt My DY)

{Z/;LHMH” 1
15
and
—(N+v9/2)
. %o+ (Iy — DMDE)y |
Oldeath = MIN la ¥z
70+ ¥ (Iy — Dt My DY )y
=, |V
—_—(k+1 16
’Z/:_:l‘leﬂ‘ ( ) ( )
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Andrieu and Doucet [28] demonstrated that the Markov
chain described above is ergodic (it is aperiodic and irre-
ducible) and the algorithm converges to the posterior dis-
tribution uniformly geometrically.

4. Experimental results
4.1. Simulated data

The performance of the algorithm in terms of detection
and estimation was first tested using synthetic data. The
methodology of testing was based on a Monte Carlo study
since it is not possible to obtain theoretical estimation of
the algorithm’s performance in a closed form. The results
in detection were compared with those found using infor-
mation theoretical criteria MDL and AIC. The estimation
results are compared with the results given by matrix pencil
algorithm [11].

The simulated signal consisted of eight sinusoidal com-
ponents. The parameters of the components are given in
Table 1. The first two components overlap heavily in fre-
quency domain and the amplitude of one is more than 60
times the amplitude of another so that the performance
in simultaneous quantification of overlapping peaks in
wide dynamic range can be tested. The next two compo-
nents mimic the situation when there is a need to quantify
a low-intensity peak obscured by baseline. The three reso-
nances around 2 rad pose a challenging problem because
they are separated just by a Nyquist step of 2n/N in fre-
quency domain so the resonance in between two more
intensive peaks is very hard to detect by visual inspection
of the Fourier spectrum (Fig. 1). Therefore their separation
requires improved resolution of the analysis. Finally, the
last resonance has a low amplitude and relatively high
damping factor that make it especially challenging to detect
in a noisy spectrum, addressing the sensitivity limit of
detection.

The results of three experiments with three increasingly
low levels of SNR were investigated, where SNR is defined
for a kth component as 10log,(4?/26?) where ¢ is noise
variance. For each experiment fifty different realizations of
noise sequence were added to the signal. The number of iter-
ations was 40,000 after 10,000 burn-in iterations. Each run
started with a single component placed randomly. No prior

information on the number of peaks or parameter values
was used. The parameter o7, for the random walk step was
chosen equal to 1/(3N). This corresponded to an acceptance
rate of 30-50% which is suggested as a good indicator for a
random walk [35]. The parameter A was set to a value of 20.
Preliminary studies with A set to 50 and 100 did not show
significant difference in performance. One can assign a prior
distribution to this hyper-parameter and sample from the
posterior with Metropolis-Hastings steps as pointed by
Andrieu and Doucet [28], but rough fixed values can give
reasonable results as well.

The same data were analyzed with the combined detec-
tion—estimation algorithm presented by Lin and co-work-
ers [11]. Two information theoretical criteria—MDL and
AIC—were used to estimate the number of components.
Parameter estimation was obtained by matrix pencil
method which is reported to have superior performance
over the popular LPSVD algorithm [11].

Considering the maximum of the posterior probability
p(kly) as an estimation of the number of components in
the signal, the algorithm confidently detects the number
of the component for experiment 1 (Table 2). As SNR
decreases, the data provide less support for unambiguous
estimation. In the second experiment less definitive results
were calculated as the detection of the components with
lower SNR become increasingly difficult. Finally, the
results of the third experiment show that components 1,
3, and 6 are sometimes left undetected. A confidence mea-
sure can be attached to the estimation to reflect the reli-
ability of the result. Examples of summarized p(kly)
values for the three experiments are presented in Fig. 2.

The AIC approach missed the sixth resonance in the first
experiment. As the noise level increased all the low-ampli-
tude components were left undetected. Performance of
MDL was somewhat inferior as just four peaks were reli-
ably detected in the first experiment and the large-ampli-
tude fourth component was missing in the second and the
third experiments.

The proposed algorithm showed good performance in
detection of the number of components given quite tough
experimental settings. It could be argued that it would be
difficult to achieve better results by visual inspection of
the magnitude spectrum, especially in the case of closely
spaced frequencies or low SNR peaks.

Table 1
Experimental settings for a simulated signal
Component Signal parameters SNR

21w o A ) 1 (6® =4) 2 (6* = 16) 3 (6% = 36)
1 —0.1 0.006 4 /4 3 -3 —6.5
2 —0.05 0.05 250 0 38.9 329 29
3 1 0.008 4 /4 3 -3 —6.5
4 1.18 0.2 300 0 40.5 34.5 30.9
5 2 0.003 30 /3 20.5 14.5 10.9
6 2+ 2n/N 0.003 6 /2 6.5 0.5 -3
7 2 +4n/N 0.0035 30 2n/3 20.5 14.5 10.9
8 3 0.016 6 3n /4 6.5 0.5 -3
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Fig. 1. Synthetic signal used in Monte Carlo study. (a) Magnitude spectra of the Lorentzian components of the signal, (b) an example spectrum of a signal

realization with an added noise sequence with a noise variance equal to 36.

Table 2
Comparative performance in detection
Algorithm: Bayesian AIC MDL

SNR SNR SNR
Comp. 1 2 3 1 2 3 1 2 3
1 1 0.98 0.6 1 0.06 0 0 0 0
2 1 1 0.98 1 1 1 1 1 1
3 1 0.96 0.73 1 0.04 0 0 0 0
4 1 1 1 1 0.98 0.94 1 0 0
5 1 1 1 1 1 1 1 1 1
6 0.98 0.5 0.2 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1
8 1 1 0.92 0.91 0 0 0 0 0
Average total 8 8 7 7 4 4 4 3 3

Success rate of the techniques in the detection of the different peaks depending on SNR is given. Success rate was calculated as proportion of runs when a
peak was detected to overall number of runs within a particular experiment. SNR numbers in columns refer to the three SNR levels from Table 1. Average
total gives an average number of resonances detected within an experiment. Entries in bold font highlight superior results in comparison with other

techniques.

An important characteristic of the MCMC sampler is its
ability to visit different states and not being stuck to a fixed
k value. The algorithm has shown good mixing properties
in our numerical study. The proportion of accepted birth
and death moves averages around 10% which is satisfac-
tory for dimension-changing moves [27]. An example of
changes in the value of & against the number of iterations
is given in Fig. 3.

The problem we consider next is of parameter estima-
tion. Obtaining parameter estimates involves summarizing
the posterior distribution on the basis of the MCMC out-
put. This problem is not trivial due to so-called ‘label-
switching’ [27] as well as genuine multimodality of the
posterior densities. A ‘label-switching’ problem occurs as
the posterior distribution of signal poles for a fixed model
order k is a mixture of k! distributions up to a label per-
mutation. One way around is to post-process output pole
samples, sorting them according to their parameters such
as angular frequencies [28] or amplitudes; see [27,36] for
discussion. However in the case of a variable number of
components the problems is more complicated as the
components may appear and disappear from the chain

output as well as move to another posterior mode. In this
paper, we use a straightforward clustering algorithm
based on pairwise distance measure to form post-pro-
cessed components. The clustering algorithm gives satis-
factory results in relabeling samples so components
parameters’ marginal posterior densities are close to
unimodal.

This gives us an opportunity to summarize the posterior
with the point estimators. A popular point estimator is a
posterior mean. Its disadvantage is that it can be mislead-
ing in situations when the posterior distribution is multi-
modal. In this case, the mean can be located between the
modes and possibly in a region of low probability. There-
fore we used maximum a posteriori (MAP) estimators of
the parameters obtained in a straightforward manner. Par-
ticularly the parameter values that deliver the maximum to
the joint posterior distribution were found:

Oniap = argmaxp((),;ic ly) (17)

0 i=1,..1
k

where [ is the number of draws from the posterior and k is
a point estimate for k.
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Fig. 2. Example of p(k|y) estimation for three levels of noise. Naturally the lower a noise level the higher the confidence that can be associated with the

point estimate of k.
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Fig. 3. Example of a chain output in respect to k£ over 100,000 iterations.
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We note that usually it is possible to achieve much better
estimation through post-processing methods discussed in
Section 5. However, keeping this in mind we tried to assess
‘raw’ performance of the algorithm before any post-pro-
cessing was applied.

The estimated values for (wy,a;) were calculated on a
pooled set of MAP estimations derived from individual
runs. The complex amplitudes a; were simulated from the
joint posterior distribution p(a;, o7 | z, k,y) and absolute
magnitudes and phase shift were calculated according to
the model, Eq. (1).

For the sake of comparison the parameters of the model
were estimated with the matrix pencil given the number of
components detected by AIC. The maximum a posteriori
estimations and standard deviations of the model parame-
ters obtained by the proposed algorithm along with root
mean squared errors of the Bayesian estimators and the
matrix pencil estimators are presented in the Tables 3-6.

As expected the estimation is more accurate in higher
SNR settings. The performance of the Bayesian approach
is comparable with the matrix pencil method on the high-

SNR peaks that are detected by both algorithms. As the
peak SNR decreases the Bayesian estimation seems to per-
form slightly better than the matrix pencil method. An
example of several draws from posterior distribution of
the eight components is given in Fig. 4. The Bayesian anal-
ysis was fully automated and no external input in the form
of prior knowledge of the number of components or their
parameters were made. However, in real life problems
(e.g. where the number of detectable components in a bio-
logical matrix had already been calculated) such prior
information would significantly decrease the time needed
for convergence of the chain and therefore improve the
effectiveness of the algorithm.

4.2. Real quantitative data

In order to check the quantitative properties of the pro-
posed algorithm on an experimental NMR dataset a series
of "TH NMR FIDs of a dilution series of a creatine solution
were used. The series consisted of 0.1, 1, 2, 5, and 10 mM
creatine solution standards in D,O solution with
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0.17 mM TSP as a chemical shift and concentration refer-
ence. FIDs were collected using a pulse and collect
sequence on a 500 MHz Bruker NMR spectrometer and
a S mm TXI probe. The solvent suppression pulse sequence
was based on a one-dimensional NOESY pulse sequence
that saturates the residual 'H water proton signal during
the relaxation delay (2 s) and a mixing time (150 ms). Spec-
tra were collected with 64 transients into 32 K data points
over a spectral width of 20 ppm at 37 °C.

No pre-processing methods such as phase correction
were applied. The first 80 points were removed so the signal
at the first time point would have the maximal magnitude.
The next 4096 complex data points were used as a data
input for the algorithm. The algorithm was run for
50,000 iterations after 10,000 burn-in iterations.

Since in some cases the lineshapes of creatine singlets devi-
ate from ideal Lorentzian form due to shimming imperfec-
tions, the algorithm used several Lorentzian components
to approximate the non-Lorentzian lineshapes. In this case
co-resonant components corresponding to a single peak
were summed up before quantitative analysis. We measured
the magnitude A4 of the summed peaks for the 3.02 ppm res-
onance as a measure of the relative creatine concentration in
the time-domain, with this being proportional to the area-
under-the peak in the frequency domain spectrum.

Table 3
Performance in frequency estimation

The MAP estimations for 4 and its standard deviations
were obtained from the sampler output. The numeric
results are summarized in Table 7 and illustrated in Fig. 5.

The results reveal almost perfect correlation between
concentration and estimated amplitude values for both cre-
atine peaks (+>>0.999 with p-value < 10~° for 3.02 ppm
peak and *>0.999 with p-value < 10> for 3.92 ppm
peak). The ratios between estimated amplitudes of the
3.02 ppm peak of consecutive experiments with increasing
concentrations also give a good estimation of the ratios
between real concentrations of creatine. The proposed
algorithm demonstrated consistency in quantification of a
series of diluted samples and therefore can be used for
quantitative estimation of the concentration of underlying
chemical compounds provided that the relevant resonances
are identified.

Next we checked the ability of the algorithm to deal with
more complex experimental data. We first analyzed the 'H
NMR FID data of a 10 mM L-glutamic acid standard in
D>0O solution with 1 mM TSP as a chemical shift reference.
The other experimental settings were the same as above.

No pre-processing methods such as phase correction were
applied. The FID data were centered and normalized to unit
standard deviation prior to analysis. The algorithm was run
for 50,000 iterations after 10,000 burn-in iterations. Fig. 6

Comp. MAP point estimation (standard deviation) RMSE Bayesian RMSE matrix pencil

SNR SNR SNR

1 2 3 1 2 3 1 2 3
1 —0.099 (0.0007) —0.1008 (0.0021) —0.09982 (0.0034) 0.0008 0.0022 0.0034 0.001 0.0014 N/D
2 —0.0499 (0.0006) —0.04996 (0.00091) —0.0509 (0.0018) 0.0006 0.0009 0.0021 0.0004 0.0021 0.0023
3 0.999 (0.001) 0.9997 (0.0035 ) 0.9985 (0.0067) 0.0013 0.0035 0.0068 0.0017 0.0016 N/D
4 1.1803 (0.0025) 1.179 (0.0079 ) 1.177 (0.011) 0.0025 0.008 0.0114 0.0017 0.0112 0.0112
5 1.9999 (0.0003) 2 (0.00024) 2 (0.00018) 0.0004 0.0004 0.0005 0.0003 0.0004 0.0004
6 2.0058 (0.0038) 2.005 (0.0068 ) 2.001 (0.01) 0.0039 0.0069 0.0115 N/D N/D N/D
7 2.0124 (0.0002) 2.013 (0.00023) 2.013 (0.00022) 0.0003 0.0005 0.0005 0.0003 0.0004 0.0004
8 2.9994 (0.0022) 3.002 (0.0059 ) 3.003 (0.0085) 0.0023 0.0061 0.009 0.0018 N/D N/D

Point estimations for component’s frequency values obtained by the MAP approach with respective standard deviation are given. Components are listed in
rows. Root mean-squared errors for frequency estimations for the Bayesian algorithm and the matrix pencil technique show close performance for
detected resonances. N/D, not detected. Entries in bold font highlight superior results in comparison with other techniques.

Table 4

Performance in damping factor estimation

Comp. MAP point estimation (standard deviation) RMSE Bayesian RMSE matrix pencil

SNR SNR SNR

1 2 3 1 2 3 1 2 3
1 0.00573 (0.0011) 0.0072 (0.0026 ) 0.00595 (0.0035) 0.0011 0.0029 0.0124 0.0009 0.0006 N/D
2 0.0499 (0.00039) 0.0499 (0.0012 ) 0.0495 (0.0013) 0.0004 0.0012 0.0995 0.0004 0.0006 0.0998
3 0.00804 (0.0015 ) 0.00847 (0.0024 ) 0.00793 (0.0043) 0.0015 0.0024 0.0165 0.0019 0.0028 N/D
4 0.2 (0.0027) 0.199 (0.0054 ) 0.196 (0.0098) 0.0027 0.0055 0.3965 0.002 0.0074 0.3918
5 0.003 (0.00027) 0.00311 (0.00026) 0.00322 (0.0002) 0.0003 0.0003 0.0062 0.0003 0.0002 0.0063
6 0.00303 (0.0021) 0.00249 (0.0024 ) 0.00203 (0.0024) 0.0021 0.0025 0.0056 N/D N/D N/D
7 0.00298 (0.00017) 0.00366 (0.00037) 0.00378 (0.00033) 0.0002 0.0008 0.0068 0.0003 0.0008 0.0068
8 0.0161 (0.0021) 0.0151 (0.0041 ) 0.0203 (0.0088) 0.0021 0.0042 0.0374 0.002 N/D N/D

Point estimations for the component’s damping factor values obtained by the MAP approach with respective standard deviation and root mean-squared
errors for the Bayesian algorithm and the matrix pencil technique are given. Components are listed in rows. Entries in bold font highlight superior results
in comparison with other techniques.
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Table 5
Performance in amplitude estimation
Comp. MAP point estimation (standard deviation) RMSE Bayesian RMSE matrix pencil

SNR SNR SNR

1 2 3 1 2 3 1 2 3
1 4.39 (0.74) 4.68 (1.5) 421 (2.4) 0.8369 1.6659 2.4183 0.4813 0.8261 N/D
2 245 (1.4) 249 (3.1) 252 (5) 5.41 5.2068 5.2501 1.1587 5.3789 5.5456
3 3.91 (0.59) 4.36 (1.2) 4.75 (2) 0.5972 1.2465 2.1597 0.5809 1.3539 N/D
4 302 (24) 298 (4.5) 300 (8.4) 2.9266 4.7968 8.3618 2.4358 3.3962 6.1237
5 29.1 (1.7) 29 (1.8) 29.7 (2.1) 1.8823 2.0668 2.0978 0.6798 0.8879 1.3257
6 11(7.3) 11.7 (9.3) 13 (6.2) 8.8108 8.9013 9.3423 N/D N/D N/D
7 28.7(2.1) 29.7 (2.1) 30 (2.1) 2.4312 2.1038 2.0705 0.5506 0.8783 1.424
8 6.01 (0.53) 6.04(1) 7.16 (2.2) 0.5263 1.03 2.4601 0.5425 N/D N/D

Point estimations for the component’s amplitude values obtained by the MAP approach with respective standard deviation and root mean-squared errors
for the Bayesian algorithm and the matrix pencil technique are given. Components are listed in rows. Entries in bold font highlight superior results in
comparison with other techniques.

Table 6
Performance in phase shift estimation
Comp. MAP point estimation (standard deviation) RMSE Bayesian RMSE matrix pencil

SNR SNR SNR

1 2 3 1 2 3 1 2 3
1 0.727 (0.13) 0.869 (0.32) 0.648 (0.54) 0.1469 0.3341 0.5546 0.1515 0.2591 N/D
2 —0.001 (0.0074) —0.0001 (0.012) 0.0149 (0.027) 0.0077 0.0115 0.0306 0.0058 0.0221 0.0251
3 0.818 (0.13) 0.775 (0.28) 0.947 (0.63) 0.132 0.28 0.646 0.1167 0.2869 N/D
4 0.0004 (0.0069) 0.00336 (0.02) 0.0089 (0.032) 0.0069 0.0207 0.0332 0.0067 0.0284 0.0301
5 1.12 (0.16) 1.21 (0.085) 1.23 (0.054) 0.1769 0.18 0.1869 0.1633 0.1746 0.1776
6 1.43 (0.49) 1.3 (0.83) 1.4 (1.1) 0.5105 0.9246 1.0748 N/D N/D N/D
7 2.03 (0.11) 1.91 (0.073) 1.9 (0.07) 0.132 0.1988 0.205 0.1612 0.1816 0.1789
8 2.36 (0.11) 2.35(0.21) 2.25(0.21) 0.1091 0.2148 0.2342 0.0995 N/D N/D

Point estimations for the component’s phase shift values obtained by the MAP approach with respective standard deviation and root mean-squared errors
for the Bayesian algorithm and the matrix pencil technique are given. Components are listed in rows. Entries in bold font highlight superior results in
comparison with other techniques.
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Fig. 4. Example of samples drawn from the posterior distribution. Grey-magnitude spectra of 100 samples drawn from p(z, alk, y). Black—MAP point
estimates for components. Higher variation of the peak shapes around 2 rad suggests higher uncertainty in the model parameters’ values.

shows the Fourier magnitude spectrum of the signal as well ‘used’ to approximate the residual water resonance and
as a spectrum of modeled signal and residuals. Overall, about TSP, used as an internal reference. The spectrum of glutamic
60 components were detected. However some of them were  acid was estimated as a set of approximately 40 peaks.
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Table 7

MAP estimations and standard deviations of the amplitude estimates of creatine resonances

Creatine concentration, mM

Estimated amplitude of 3.02 ppm
resonance (standard deviation)

Estimated ratios of amplitudes of consequent
concentration samples (standard deviation)

0.1 5111 (243) N/A
1 42252 (256) 8.27 (0.47)
2 81081 (267) 1.92 (0.02)
5 208306 (521) 2.57 (0.02)
10 417436 (495) 2.00 (0.01)
a x 10° b 5 10"
4
35 451 1
3 4k 1
25 35 3.02 ppm resonance -
2z 8
2 2 2 3 i
E g
£15 S 55 |
£ <
1 £ )
TSP 30 7
05 E
T 151 4
O,B
10 1k i
0.5 4
Creatine 4 3 ol : . ‘ ‘ ‘ ]
concentration, mM 5 ppm 0 2 4 6 8 10

creatine concentration, mM

Fig. 5. A serial dilution experiment. (a) A series of magnitude spectra of creatine standard FID’s with concentrations 0.1, 1, 2, 5, and 10 mM and added
0.16 mM TSP. (b) A plot of estimated amplitudes of the two creatine resonances and a TSP resonance against creatine concentration. Good linear fit
suggests high correlation (> > 0.99) between concentration and estimated amplitudes obtained with the Bayesian algorithm.

Finally, we applied the proposed method to quantifica-
tion of a '"H FID obtained from a human blood plasma
sample. Our aim was primarily to test the ability of the
algorithm to process real medical and biological samples
as used in metabolomics. The sample was prepared by
diluting 150 pl of blood plasma in 450 pl of 0.9% NaCl in
D,0O. Other acquisition parameters were as described
above.

Fig. 6 shows a general fit of the model chosen by MAP
criterion after 50,000 iterations following 10,000 burn-in.
Quantification was satisfactory with the residual magni-
tude close to the noise level. The Markov chain stabilized
with a k value at ~187. Some of the resonances in the
model serve for approximating non-Lorentzian and irregu-
lar lineshapes such as slow-varying background due to
presence of large molecules.

The ability of the algorithm to effectively disentangle
overlapping peaks invites several possible applications.
One example appropriate to metabolomics is the problem
of co-resonance. For example, the methyl doublet of lac-
tate may play a significant role in medical applications of
"H NMR spectroscopy as a marker for particular disease
processes and therapeutic responses. However, it is co-res-
onant with a set of large lipid resonances. The quantitative

model obtained by Bayesian modeling allows us to separate
resonances according to their chemical shift, spin—spin
relaxation (z,) time and magnitude that gives clear oppor-
tunity to disentangle the lactate methyl doublet from the
broad and more intensive lipid signals (Fig. 7).

In conclusion, the performance of the algorithm on both
simulated and real data was highly robust. Known reso-
nances of the standard spectrum were fitted without any
interference from an experimenter. In addition to peak
detection and quantification, in the case of the blood
plasma sample, a ‘nuisance’ lipid resonances were quanti-
fied and removed without affecting components of interest.

5. Discussion

In this paper, we have presented an algorithm for the
joint estimation of the number of components and their
parameters within a Bayesian framework for a NMR spec-
trum. The algorithm is based on the method described by
Andrieu and Doucet [28] and generalizes it to the case of
a complex-valued signal with the presence of Lorentzian
decay. This algorithm has been successfully applied to the
processing of both simulated and real data. In addition,
by analyzing the FID in the time domain, the approach
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has provided improved resolution in the time domain of
complex mixtures such as blood plasma.

The Bayesian approach has been applied previously to the
problem of sinusoidal signal estimation. Bretthorst presented
a convincing Bayesian treatment to the problem [19-23].
However, this approach required a number of assumptions
and may be complicated to implement in certain situations.
In addition, Barone and Ragona [37]employed a Metropolis
MCMC method for sampling from the posterior distribution
of signal poles. However, this algorithm needs prior knowl-
edge e.g. approximate values of the prior means and vari-
ances of z and a in order to reach a better estimation
results. Dou and Hodgson offered an algorithm based on
Gibbs sampling [24,25]. They linearize a non-linear posterior
distribution around a maximum which requires optimization
and may be difficult to implement in the case of low SNR.

The major difference with our approach is that for the
majority of other algorithms the number of signal compo-
nents has to be predefined. This is not always known in
many problems associated with mixtures, especially in
applications such as metabolomics. The model selection
problem is difficult, and is addressed here within a consis-

tent Bayesian framework. Additional benefit of the trans-
dimension approach presented here is the better mixing
of the Markov chain achieved through varying k [27].

The model we chose to use in the paper is probably the
most widely used for modeling NMR spectroscopic signals
but is not the only possible approach. Other approaches
could include Gaussian and more generally Voigt models
for signal decay, and these should not present any serious
problem in being implemented within our general approach.
However, the basic model presented in this paper performed
satisfactorily, and could approximate non-Lorentzian com-
ponents by a mixture of Lorentzian components as can be
seen in the case of the water resonance.

In the current implementation the algorithm can be
computationally intensive. The processing of one simulated
dataset (Section 4.1) on a Pentium 4 with 1GB of RAM
and 64-bit Linux operating system took typically about
10 min. The algorithm was implemented within Matlab
7.3. There are several ways to improve the processing time
including algorithm modifications mentioned below as well
as optimizing the code and the possible use of a more effi-
cient programming environment.
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Our choice of prior and proposal distributions and sam-
pler moves are quite general and these choices are not nec-
essarily optimal to the problem. The use of more specific
proposal distributions for z can potentially improve the
convergence time of the algorithm. For example, the power
spectrum can be used for proposing angular frequencies
[28]. The set of sampler moves clearly can be extended by
split/merge moves as proposed in [27,28]. A more interest-
ing extension though would be a generalization of dimen-
sion-switching moves to allow the introduction of not
just single components but more complex entities as multi-
plets or even fingerprints of chemical compounds. This
could lead to a probabilistic solution of the assignment
problem, i.e. relating model components to chemical com-
pounds, that is crucial for identification and quantification
of NMR samples.

Furthermore, the estimator used in the experimental sec-
tion could be improved. MCMC methods are not specifi-
cally aimed at deriving MAP estimators as the sampler
can fail to visit the regions near posterior density modes
[38]. Moreover, modes of the joint posterior density may
not necessary provide good estimations for the marginal
densities of the parameters of interest, especially in high-
dimensional parameter space. In the cases where the
closed-form solution is known for the marginal posterior
densities the expectation—-maximization (EM) algorithm is
the standard technique for finding local posterior modes.
As expectation and maximization steps cannot be per-
formed analytically in our case, numerical non-linear opti-
mization algorithms can be used such as the well-known
Newton—Raphson algorithm [39]. Another possibility is
to employ MCMC-based techniques for obtaining a mar-
ginal maximum as a posteriori estimation [38].

6. Conclusions

An algorithm for joint detection and estimation of a
complex exponentially damped sinusoidal model was pro-
posed. The algorithm uses Bayesian inference and Revers-
ible Jump MCMC technique to obtain estimations for the
model order and sinusoidal component parameters. The
Monte Carlo simulations have shown that the proposed
approach performs well in the difficult cases of low SNR
and closely spaced frequencies. The algorithm has been
tested on real '"H NMR time-domain data of a L-glutamic
acid standard and a blood plasma sample and has shown
good performance in resonance detection and estimation.

The most significant benefit of the algorithm is that the
analysis is essentially automatic and demands little opera-
tor intervention. The quantified model of the spectrum pro-
duced by this algorithm produces the parameters of interest
directly for problems associated with the detection and
quantification of components in mixtures. Thus, most of
the data processing steps used in NMR spectroscopy of
mixtures such as nuisance peak removal, baseline and
phase correction are automated. This approach could
greatly facilitate the quantitative use of NMR as well as

comparative studies and pattern recognition based tech-
niques such as those used in metabolomics.
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Appendix A
Notation

lg(z)—the indicator function of the set E,
lz(z) = 1if z € E, 0 otherwise.

Iy—identity matrix of dimension N X N.

Ifz= [Zl,. s Zlys .,Zk] then Z_;—= [Zl, s Z 152 4 1 - .,Zk].
Probability distributions:

Inverse Gamma

IG(z | o, B) = Lz—i—le(—ﬁ/ﬂ

I'(a)

Gaussian
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